52 research outputs found

    Deterministic Linear Time Constrained Triangulation using Simplified Earcut

    Get PDF
    Triangulation algorithms that conform to a set of non-intersecting input segments typically proceed in an incremental fashion, by inserting points first, and then segments. Inserting a segment amounts to: (1) deleting all the triangles it intersects; (2) filling the so generated hole with two polygons that have the wanted segment as shared edge; (3) triangulate each polygon separately. In this paper we prove that these polygons are such that all their convex vertices but two can be used to form triangles in an earcut fashion, without the need to check whether other polygon points are located within each ear. The fact that any simple polygon contains at least three convex vertices guarantees the existence of a valid ear to cut, ensuring convergence. Not only this translates to an optimal deterministic linear time triangulation algorithm, but such algorithm is also trivial to implement. We formally prove the correctness of our approach, also validating it in practical applications and comparing it with prior art

    Skeleton based cage generation guided by harmonic fields

    Get PDF
    International audienceWe propose a novel user-assisted cage generation tool. We start from a digital character and its skeleton, and create a coarse control cage for its animation. Our method requires minimal interaction to select bending points on the skeleton, and computes the corresponding cage automatically. The key contribution is a volumetric field defined in the interior of the character and embedding the skeleton. The integral lines of such field are used to propagate cutting surfaces from the interior of the character to its skin, and allow us to robustly trace non-planar cross sections that adapt to the local shape of the character. Our method overcomes previous approaches that rely on the popular (but tedious and limiting) cutting planes. We validated our software on a variety of digital characters. Our final cages are coarse yet entirely compliant with the structure induced by the underlying skeleton, enriched with the semantics provided by the bending points selected by the user. Automatic placement of bending nodes for a fully automatic caging pipeline is also supported

    Environmental and Oceanographic Conditions at the Continental Margin of the Central Basin, Northwestern Ross Sea (Antarctica) since the Last Glacial Maximum

    Get PDF
    The continental margin is a key area for studying the sedimentary processes related to the advance and retreat of the Ross Ice Shelf (Antarctica); nevertheless, much remains to be investigated. The aim of this study is to increase the knowledge of the last glacial/deglacial dynamics in the Central Basin slope–basin system using a multidisciplinary approach, including integrated sedimentological, micropaleontological and tephrochronological information. The analyses carried out on three box cores highlighted sedimentary sequences characterised by tree stratigraphic units. Collected sediments represent a time interval from 24 ka Before Present (BP) to the present time. Grain size clustering and data on the sortable silt component, together with diatom, silicoflagellate and foraminifera assemblages indicate the influence of the ice shelf calving zone (Unit 1, 24–17 ka BP), progressive receding due to Circumpolar Deep Water inflow (Unit 2, 17–10.2 ka BP) and (Unit 3, 10.2 ka BP–present) the establishment of seasonal sea ice with a strengthening of bottom currents. The dominant and persistent process is a sedimentation controlled by contour currents, which tend to modulate intensity in time and space. A primary volcanic ash layer dated back at around 22 ka BP is correlated with the explosive activity of Mount Rittmann

    Evidence for a large-magnitude Holocene eruption of Mount Rittmann (Antarctica): A volcanological reconstruction using the marine tephra record

    Get PDF
    In Antarctica, the near-source exposures of volcanic eruption deposits are often limited as they are not well preserved in the dynamic glacial environment, thus making volcanological reconstructions of explosive eruptions extremely challenging. Fortunately, pyroclastic deposits from explosive eruptions are preserved in Southern Ocean sediments surrounding Antarctica, and the tephrostratigraphy of these sequences offers crucial volcanological information including the timing and tempo of past eruptions, their magnitude, and eruption dynamics. Here we report the results of a tephrostratigraphy and tephrochronology study focused on four sediment cores recovered from the Wood Bay area in the western Ross Sea, Antarctica. In all these sedimentary sequences, we found a well-stratified primary tephra of considerable thickness, up to 80 cm, hereafter named the Aviator Tephra (AVT). According to the characteristics of the tephra deposit and its distribution, the AVT was associated with an eruption of considerable intensity, potentially representing one of the largest Holocene eruptions recorded in Antarctica. Based on the major and trace element geochemistry and the mineral assemblage of the tephra, Mount Rittmann was identified as the source of the AVT. A Holocene age of ∌11 ka was determined by radiocarbon dating organic material within the sediments and 40Ar-39Ar dating of alkali-feldspar crystals included in the tephra. Eruption dynamics were initially dominated by hydromagmatic magma fragmentation conditions producing a sustained, relatively wet and ash-rich eruptive cloud. The eruption then evolved into a highly energetic, relatively dry magmatic Plinian eruption. The last phase was characterized by renewed efficient magma-water interaction and/or collapse of the eruptive column producing pyroclastic density currents and associated co-ignimbritic plumes. The distal tephra deposits might be linked to the widespread lag breccia layer previously identified on the rim of the Mount Rittmann caldera which share the same geochemical composition. Diatoms found in the sediments surrounding the AVT and the primary characteristics of the tephra indicate that the Wood Bay area was open sea at the time of the eruption, which is much earlier than previously thought. AVT is also an excellent tephrostratigraphic marker for the Wood Bay area, in the Ross Sea, and a useful marker for future synchronization of continental ice and marine archives in the region

    Design and implementation of a visualization tool for the in-depth analysis of the domestic electricity consumption

    Get PDF
    In this poster, we present a visualization tool for the in-depth analysis of domestic electricity consumption. The web-interface allows users to visualize their electricity consumption, compare them with their own records or with the means of selected communities

    Rewriting rules for the dual graph of a stripified CLOD mesh

    No full text
    A triangular mesh is the piecewise linear approximation of a sampled or analytical surface, when each patch is a triangle. The connectivity of the mesh can be easily represented using its dual graph. Each node of such a graph has at most three incident edges; if the surface is homeomorphic to a sphere, each node has exactly three incident edges. Several triangular meshes, representing the same surface, with an increasing number of triangles are a representation of the surface at different levels of detail (LOD). When the number of triangles from one LOD to another varies continuously we call such a structure a continuous level of detail (CLOD) approximation of the surface. Given a CLOD data structure we can extract, at each level, the mesh representing the surface and derive its dual graph. If we group the triangles forming each mesh in strips, to accelerate their rendering, we should use two colors for the dual graph's edges to distinguish between the edges linking nodes belonging to the same strip or not. The main goal of this paper is to present a set of rules to recolor the dual graph of the mesh when passing from one LOD to the next and back. The operations used to change the mesh are a Vertex Split (VS) when the resolution increases, and an Edge Collapse (EC) when the resolution decreases. We can, then, use a local topological analysis to derive the rules allowing to recolor the graph, and to show that, under certain conditions, the recoloring is optimal. This allows to keep effectively an optimal triangle strip structure over the mesh, while changing its resolution

    Partitioning Meshes into Strips using the Enhanced Tunnelling Algorithm

    No full text
    Triangle meshes are the most used representations for three-dimensional objects, and triangle strips are the organization of triangles mostly used for efficient rendering. Since the problem of optimal strip decomposition of a given mesh is NP-complete, many different heuristics have been proposed; the quality of the stripification is usually evaluated using standard indicators as the total number of strips, the number of isolated triangles, the cache coherence, the number of swap vertices. In this paper we present the Enhanced Tunnelling Algorithm (ETA), a stripification method working on the dual graph of a mesh. The method uses a sophisticated mechanism of dynamical update of identifiers, guided by a localization procedure. The algorithm adopts a modified search approach in the dual graph that accelerated the convergence speed of the algorithm. The ETA results efficient and robust, able to deal with datasets of any dimension. The quality of the stripification is remarkable: very few strips (not seldom just one), no isolated triangles, good cache coherence (ACMR value), good number of vertex per triangle

    Learning Anatomy through a Network Hypermedia and Collaborative Work Delivery System: IPERLER

    No full text
    The utilization of an interactive 3D Visualizer integrated in the Hypermedia and Electronic Blackboard on the Network (IPERLER 1 ) based on the study of an anatomical part of the human body, has the main function of enhancing cognitive activities of users placed in the World Wide Web environment (WWW). The goal of the IPERLER system interfaced via Netscape browser is to allow the student to utilize different "areas" of integrated work, which correspond to the anatomical 3D model, to the collaborative work and to the communication involving the access to external sites. We are preparing a system composed of a WWW browser (Netscape), a collaborative work tool (Collage) and a 3D visualizer (WebSpace). These modules are interconnected to enable the user to browse the hypermedia database, activate links towards 3D objects and communicate with tutors and peers connected to the collaborative session. Starting from the current state of work carried out on the Network and taking into account ..
    • 

    corecore